c-fos regulates neuronal excitability and survival
- 4 March 2002
- journal article
- Published by Springer Nature in Nature Genetics
- Vol. 30 (4) , 416-420
- https://doi.org/10.1038/ng859
Abstract
Excitotoxicity is a process in which glutamate or other excitatory amino acids induce neuronal cell death. Accumulating evidence suggests that excitotoxicity may contribute to human neuronal cell loss caused by acute insults and chronic degeneration in the central nervous system. The immediate early gene (IEG) c-fos encodes a transcription factor. The c-Fos proteins form heterodimers with Jun family proteins, and the resulting AP-1 complexes regulate transcription by binding to the AP-1 sequence found in many cellular genes. Emerging evidence suggests that c-fos is essential in regulating neuronal cell survival versus death. Although c-fos is induced by neuronal activity, including kainic acid-induced seizures, whether and how c-fos is involved in excitotoxicity is still unknown. To address this issue, we generated a mouse in which c-fos expression is largely eliminated in the hippocampus. We found that these mutant mice have more severe kainic acid-induced seizures, increased neuronal excitability and neuronal cell death, compared with control mice. Moreover, c-Fos regulates the expression of the kainic acid receptor GluR6 and brain-derived neurotrophic factor (BDNF), both in vivo and in vitro. Our results suggest that c-fos is a genetic regulator for cellular mechanisms mediating neuronal excitability and survival.Keywords
This publication has 27 references indexed in Scilit:
- The changing landscape of ischaemic brain injury mechanismsNature, 1999
- Emerging insights into the genesis of epilepsyNature, 1999
- Oxidative Stress, Glutamate, and Neurodegenerative DisordersScience, 1993
- Continuous c-fos expression precedes programmed cell death in vivoNature, 1993
- c-Jun dimerizes with itself and with c-Fos, forming complexes of different DNA binding affinitiesPublished by Elsevier ,1988
- The role of the leucine zipper in the fos–jun interactionNature, 1988
- Glutamate neurotoxicity and diseases of the nervous systemNeuron, 1988
- The c-fos protein interacts with c-JunAP-1 to stimulate transcription of AP-1 responsive genesCell, 1988
- Stimulation of 3T3 cells induces transcription of the c-fos proto-oncogeneNature, 1984
- Tissue and cell type-specific expression of two human c-onc genesNature, 1983