Stocking impact and migration pattern in an anadromous brown trout (Salmo trutta) complex: where have all the stocked spawning sea trout gone?
- 19 March 2004
- journal article
- research article
- Published by Wiley in Molecular Ecology
- Vol. 13 (6) , 1433-1445
- https://doi.org/10.1111/j.1365-294x.2004.02162.x
Abstract
We examined polymorphism at seven microsatellite loci among sea trout (Salmo trutta) (n = 846) collected from three areas in the Limfjord (Denmark). We then assessed their potential population source by comparing, using a mixed stock analysis (MSA) Bayesian framework, their genetic composition to that of brown trout collected from 32 tributaries pooled into nine geographical regions (n = 3801) and two hatcheries (n = 222) used for stocking. For each of the three regional sea trout groups (western, central and eastern Limfjord, n = 91, n = 426, n = 329, respectively), MSA was conducted with (i) all individuals in the group, (ii) with the subset of spawning sea trout only and (iii) with the subset of foraging, nonspawning individuals only, a subset that consisted primarily of sea trout caught during their first year at sea. For all three regional sea trout groups, a higher proportion of individuals (regardless of whether they were foraging or spawning) appear to have originated from the rivers that drain locally, than from the rivers that drain in other parts of the Limfjord. This suggests (1) that sea trout, at least during their first year at sea, undertake limited migrations within the Limfjord system and (2) that sea trout on their spawning run were caught close to their natal rivers. The proportion of sea trout of hatchery origin varied widely among all three Limfjord areas and broadly reflected regional stocking histories, with high proportions of sea trout of domestic origin in the east (39.3%), where stocking with domestic trout was practised intensely at the time of sampling, and in the west (57.2%), where a programme of coastal stocking of post smolts took place over several years in the early 1990s. In contrast, in the central Limfjord, where stocking with domestic trout was largely abandoned in the early 1990s, the proportion of sea trout of domestic origin was only 8.5%. Interestingly, for all three regional sea trout groups, virtually no sea trout of hatchery origin were found among the spawning individuals, which were on average larger than the nonspawning sea trout. These results suggest that stocked domestic brown trout that become anadromous experience high mortality at sea and are therefore largely absent among the larger, spawning individuals. We conclude that sea trout of domestic origin exhibit much reduced ability to reproduce and are unlikely to contribute significantly to the local gene pool largely because of a relatively high mortality at sea before the onset of maturity.Keywords
This publication has 41 references indexed in Scilit:
- Multiple stock structure of Atlantic cod (Gadus morhua) off Newfoundland and Labrador determined from genetic variationICES Journal of Marine Science, 2002
- Estimating the long‐term effects of stocking domesticated trout into wild brown trout (Salmo trutta) populations: an approach using microsatellite DNA analysis of historical and contemporary samplesMolecular Ecology, 2002
- Conservation genetics of harbour porpoises, Phocoena phocoena, in eastern and central North AtlanticConservation Genetics, 2001
- Lifetime success and interactions of farm salmon invading a native populationProceedings Of The Royal Society B-Biological Sciences, 2000
- Determining the source of individuals: multilocus genotyping in nonequilibrium population geneticsTrends in Ecology & Evolution, 1999
- MOLECULAR CONTRIBUTIONS TO CONSERVATIONEcology, 1998
- (CT)n and (GT)n microsatellites: a new class of genetic markers for Salmo trutta L. (brown trout)Heredity, 1993
- Breeding Success of Hatchery and Wild Coho Salmon (Oncorhynchus Kisutch) in CompetitionEcological Applications, 1993
- Inference from Iterative Simulation Using Multiple SequencesStatistical Science, 1992
- Estimating Stock Composition in Mixed Stock Fisheries Using Morphometric, Meristic, and Electrophoretic CharacteristicsCanadian Journal of Fisheries and Aquatic Sciences, 1984