Abstract
Quantum yields of the triplet sulfur dioxide (3SO2)‐sensitized phosphoresence (Φsens) in biacetyl (Ac2) have been determined in experiments over a wide range of pressures of SO2 and Ac2. Excited singlet sulfur dioxide (1SO2) was generated using 2650‐Å and 28757hyphen;Å light. The values of Φsens were dependent on the [SO2]/[Ac2] ratio, as anticpated theoretically. However, in runs at a fixed [SO2]/[Ac2] ratio, the measured Φsens values were dependent on the total pressure. This theoretically unexpected effect is probably largely the result of biacetyl triplet diffusion with deactivation at the cell wall. Treatment of the quantum yield data in terms of the complete mechanism gave new estimates of the following rate functions: 1SO2 + SO2 → (2SO2) (1), 1SO2 + SO23SO2 + SO2 (2), k2/(k1 + k2) = 0.082 ± 0.003 (2650 Å), 0.095 ± 0.005 (2875 Å) 3SO2 + Ac2 → SO2 + 3Ac2 (9a), 3SO2 + Ac2 → SO2 + Ac2 (9b), k9a + k9b = (8.4 ± 2.1) × 1010 (2650 Å), (8.1 ± 3.0) × 1010 l./mole‐sec (2875 Å) 3SO2 → SO2 + hvp (6), k6 = (7.3 ± 1.3) × 101 sec−1.