The mechanism of action of hexahydro-1,3,5-triethyl-s-triazine

Abstract
The mechanism of antimicrobial action of hexahydro-1,3,5-triethyl-s-triazine (HHTT) was studied using the HHTT-resistant isolate,Pseudomonas putida 3-T-152, its HHTT-sensitive, novobiocin-cured derivative,P. putida 3-T-152 11:21,P. putida ATCC 12633,Pseudomonas aeruginosa PA01 andEscherichia coli J53 (RP4). HHTT was oxidized byP. putida 3-T-152, while respiration ofP. putida 3-T-152 11:21 was inhibited by HHTT. Chemical assays showed that HHTT released formaldehyde.P. putida 3-T-152 was highly resistant to formaldehyde, whileP. putida 3-T-152 11:21 was highly sensitive to formaldehyde. Both HHTT and formaldehyde acted similarly to inhibit proline uptake in bacterial cells and to inhibit the synthesis of the inducible enzymes, β-galactosidase and glucose-6-phosphate dehydrogenase. HHTT did not have uncoupler-like activity.P. putida 3-T-152 used either HHTT or ethylamine, a component of HHTT, as a nitrogen source for growth, but neither HHTT, ethylamine or formaldehyde served as a carbon and energy source for growth. We concluded that a major mechanism of antimicrobial action of HHTT was through its degradation product, formaldehyde.