Role of Interactions in the Far-Infrared Spectrum of a Lateral Quantum-Dot Molecule

Abstract
We study the effects of electron-electron correlations and confinement potential on the far-infrared spectrum of a lateral two-electron quantum-dot molecule by exact diagonalization. The calculated spectra directly reflect the lowered symmetry of the external confinement potential. Surprisingly, we find interactions to drive the spectrum towards that of a high-symmetry parabolic quantum-dot. We conclude that far-infrared spectroscopy is suitable for probing effective confinement of the electrons in a quantum-dot system, even if interaction effects cannot be resolved in a direct fashion.
All Related Versions