Abstract
Unilateral removal of the telencephalon in the leopard frog, Rana pipiens, produces a contralateral deficit in visual prey orienting behavior [Patton and Grobstein, 1997]. In mammals, such deficits are most commonly associated with damage to the isocortex, a pallial derived structure. In contrast, we here report that in leopard frogs, lesions that remove substantial areas of one telencephalic lobe, including virtually the entire pallium, have no discernible effect on visual orienting behavior. Restricted lesions to the ventrocaudal telencephalon, however, produce an effect that closely resembles that produced by the complete removal of one telencephalic lobe. The ‘critical area’ that is both included in all lesions that are effective in producing a severe deficit and excluded from all ineffective lesions includes a portion of the caudal striatum. The striatum is known to play a significant role in anuran vision. It thus seems likely that the deficit produced by unilateral removal of the telencephalon in the leopard frog is due specifically to the removal of the caudal striatum. Unilateral lesions to the striatum have previously been shown to produce a contralateral deficit in visual orienting behavior in cats, and a role for the striatonigral pathway in the production of the visual orienting deficit that follows visual cortex lesions has been proposed. The current findings call attention to the possible general importance of the striatum in the control of vertebrate visual orienting behaviors.