Integrability and the motion of curves

Abstract
Recently discovered connections between integrable evolution equations and the motion of curves are based on the following fact: The Serret-Frenet equations are equivalent to the Ablowitz-Kaup-Newell-Segur (AKNS) scattering problem at zero eigenvalue. This equivalence identifies those evolution equations, integrable or not, that can describe the motion of curves.

This publication has 10 references indexed in Scilit: