Effect of the surface charge of liposomes on their uptake by angiogenic tumor vessels
Open Access
- 25 March 2003
- journal article
- research article
- Published by Wiley in International Journal of Cancer
- Vol. 105 (4) , 561-567
- https://doi.org/10.1002/ijc.11108
Abstract
Recently, cationic liposomes have been shown to preferentially target the angiogenic endothelium of tumors. It was the aim of our study to investigate the influence of liposomal surface charge on the uptake and kinetics of liposomes into solid tumors and tumor vasculature. Experiments were performed in the amelanotic hamster melanoma A‐Mel‐3 growing in the dorsal skinfold chamber preparation of male Syrian golden hamsters. Fluorescently labeled liposomes with different surface charge were prepared. Accumulation of i.v. injected liposomes was assessed by quantitative intravital fluorescence microscopy of tumor and surrounding host tissue. The histological distribution of liposomes was analyzed by double‐fluorescence microscopy 20 min after application of fluorescently labeled lectin as a vascular marker. After i.v. application of anionic and neutral liposomes, we observed an almost homogeneous distribution of liposome‐induced fluorescence throughout the chamber preparation without specific targeting to tumor tissue. In contrast, cationic liposomes exhibited a significantly enhanced accumulation in tumor tissue and tumor vasculature up to 3‐fold compared to surrounding tissue (p<0.05). The histological distribution of neutral and anionic liposomes revealed extravasation 20 min after i.v. injection, while cationic liposomes displayed a highly selective accumulation on the vascular endothelium. In conclusion, cationic liposomes exhibited a preferential uptake in angiogenic tumor vessels and therefore may provide an efficient tool for the selective delivery of diagnostic or therapeutic agents to angiogenic blood vessels of solid tumors. On the other hand, anionic and neutral liposomes may be used as carriers of drugs to the extravascular compartment of tumors due to their extravasation.Keywords
This publication has 23 references indexed in Scilit:
- A phase I dose-escalating study of DaunoXome, liposomal daunorubicin, in metastatic breast cancerBritish Journal of Cancer, 2002
- Delivery of molecular and cellular medicine to solid tumors1PII of original article: S0169-409X(97)00027-6. The article was originally published in Advanced Drug Delivery Reviews 26 (1997) 71–90.1Advanced Drug Delivery Reviews, 2001
- The potential role of antivascular therapy in the adjuvant and neoadjuvant treatment of cancerSeminars in Oncology, 2001
- Cationic liposomes target angiogenic endothelial cells in tumors and chronic inflammation in mice.Journal of Clinical Investigation, 1998
- Delivery of Molecular Medicine to Solid TumorsScience, 1996
- Stabilization of Topotecan in Low pH Liposomes Composed of DistearoylphosphatidylcholineJournal of Pharmaceutical Sciences, 1994
- Barriers to Drug Delivery in Solid TumorsScientific American, 1994
- Therapy of mouse mammary carcinomas with vincristine and doxorubicin encapsulated in sterically stabilized liposomesInternational Journal of Cancer, 1993
- Clinical Pharmacokinetics of DoxorubicinClinical Pharmacokinetics, 1988
- Vascular Endothelium as the Vulnerable Element in TumoursActa Radiologica: Oncology, 1984