Simulataneous application of charge coupled device array-detected Raman spectroscopy and differential scanning calorimetry to in situ investigation of phase transitions in condensed matter
- 1 January 1992
- journal article
- research article
- Published by Royal Society of Chemistry (RSC) in Journal of the Chemical Society, Faraday Transactions
- Vol. 88 (18) , 2717-2720
- https://doi.org/10.1039/ft9928802717
Abstract
The combination of differential scanning calorimetry (DSC) with charge coupled device (CCD) array-detected Raman spectroscopy for the in situ investigation of phase transition is illustrated using ammonium nitrate as an example. This method aids unambiguous characterization of different phases by providing a simultaneous probe of thermodynamic and vibrational data. The availability of real-time vibrational data, including both the internal and external mode regions, is unique to array-detected Raman spectroscopy. The intensity changes of the symmetric stretching mode ν1 of the nitrate ions and the lattice vibrations, that accompany the phase transition IV → II of ammonium nitrate, are rationalized in terms of the known crystal structure data.Keywords
This publication has 0 references indexed in Scilit: