Effects of sinusoidal whole-body vibration on the lumbar spine: the stress-strain relationship

Abstract
The aim of this experimental study was to estimate the strain in the lumbar spine due to whole-body vibration (WBV). Four male subjects were exposed to vertical sinusoidal WBV with frequencies ranging from 1 to 15 Hz at two intensities (I1 = 1.5 ms−2 rms; I2 = 3.0 ms−2 rms). The compressive forces acting on the disc L3-4 during the extreme values of acceleration were predicted on the basis of anthropometric data, EMG of back muscles and the acceleration of the upper trunk, using a simple biomechanical model. The estimated mechanical activity of back muscles was not able to protect the spine under many exposure conditions. The highest compressive forces were predicted for WBV with 7.5, 8 and 4.5 Hz. The results suggest the possibility of fatigue failures at the endplates of lumbar vertebrae after intense long-term exposure to WBV.