Virtual-crystal approximation that works: Locating a composition phase boundary in Pb(Zr_{1-x}Ti_3)O_3

Abstract
We present a new method for modeling disordered solid solutions, based on the virtual crystal approximation (VCA). The VCA is a tractable way of studying configurationally disordered systems; traditionally, the potentials which represent atoms of two or more elements are averaged into a composite atomic potential. We have overcome significant shortcomings of the standard VCA by developing a potential which yields averaged atomic properties. We perform the VCA on a ferroelectric oxide, determining the energy differences between the high-temperature rhombohedral, low-temperature rhombohedral and tetragonal phases of Pb(Zr_{1-x}Ti_x)O_3 at x=0.5 and comparing these results to superlattice calculations and experiment. We then use our new method to determine the preferred structural phase at x=0.4. We find that the low-temperature rhombohedral phase becomes the ground state at x=0.4, in agreement with experimental findings.

This publication has 0 references indexed in Scilit: