Origin of Enantioselectivity in the Ru(arene)(amino alcohol)-Catalyzed Transfer Hydrogenation of Ketones

Abstract
The origin of the enantioselectivity in the ruthenium-catalyzed transfer hydrogenation has been studied by means of experiment and density functional theory calculations. The results clearly show that electrostatic effects are of importance, not only in the T-shaped arene-aryl interaction in the favored transition state but also between the aryl of the substrate and the amine ligand in the disfavored TS. In addition, the electrostatic interaction between the alkyl substituent of the substrate and the catalyst is of importance to the enantioselectivity. The major cause of enantioselection is found to be of nonelectrostatic origin. This inherent property of the catalytic system is discussed in terms of dispersion forces and solvent effects. Finally, a minor but well-characterized steric effect was identified. The success of this class of catalysts in the reduction of alkyl aryl ketones is based on the fact that all factors work in the same direction.

This publication has 47 references indexed in Scilit: