Bone marrow transplantation from α1,3‐galactosyltransferase gene‐knockout pigs in baboons

Abstract
Background: Successful hematopoietic cell allotransplantation results in donor-specific tolerance, but this approach has been unsuccessful in the wild-type pig-to-baboon xenotransplantation model, as pig cells were lost from the circulation within 5 days. However, after cessation of immunosuppressive therapy on day 28, all baboons demonstrated non-specific unresponsiveness on mixed leukocyte reaction (MLR) for at least 30 days. We have now investigated the transplantation of bone marrow (BM) cells from miniature swine homozygous for α1,3-galactosyltransferase gene-knockout (GalT-KO). Methods: Baboons (n = 3) were pre-treated with whole body and thymic irradiation, anti-thymocyte globulin, and splenectomy, and received immunosuppressive and supportive therapy for 28 days. BM was harvested from GalT-KO swine (n = 3). The baboons were monitored for the presence of pig cells by flow cytometry and colony-forming units (CFUs), and for cellular reactivity by MLR. Results: A mean of 11 × 108 BM cells/kg was infused into each baboon. The mean absolute numbers and percentages of pig cells detected in the blood at 2 h and on days 1, 2 and 4, respectively, were 641/μl (9.5%), 132/μl (3.4%), 242/μl (3.9%), and 156/μl (2.9%). One baboon died (from accidental hemorrhage) on day 6, at which time chimerism was present in the blood (2.0%) and BM (6.4%); pig cell engraftment in the BM was confirmed by polymerase chain reaction (PCR) of CFUs. In the two other baboons, blood chimerism was lost after day 5 but returned at low levels (<1%) between days 9 to 16 and 7 to 17, respectively, indicating transient BM engraftment. Both surviving baboons showed non-specific unresponsiveness on MLR until they were euthanized on days 85 and 110, respectively. Conclusions: By using BM cells from GalT-KO pigs, chimerism was detected at levels comparable with previous studies when 30-fold more growth factor-mobilized peripheral blood progenitor cells had been transplanted. In addition, cellular hyporesponsiveness was prolonged. However, long-term engraftment and chimerism were not achieved.