Entanglement detection in the stabilizer formalism

Abstract
We investigate how stabilizer theory can be used for constructing sufficient conditions for entanglement. First, we show how entanglement witnesses can be derived for a given state, provided some stabilizing operators of the state are known. These witnesses require only a small effort for an experimental implementation and are robust against noise. Second, we demonstrate that also nonlinear criteria based on uncertainty relations can be derived from stabilizing operators. These criteria can sometimes improve the witnesses by adding nonlinear correction terms. All our criteria detect states close to Greenberger-Horne-Zeilinger states, cluster and graph states. We show that similar ideas can be used to derive entanglement conditions for states which do not fit the stabilizer formalism, such as the three-qubit W state. We also discuss connections between the witnesses and some Bell inequalities.