Amino Acid Neurotransmitter Receptor Changes in Cerebral Cortex in Alcoholism: Effect of Cirrhosis of the Liver

Abstract
Gamma-aminobutyric acidA/benzodiazepine receptor binding sites and the N-methyl-D-aspartate subclass of glutamate receptor sites were assessed in synaptic plasma membrane homogenates of cerebral cortex tissue obtained at autopsy from cirrhotic and noncirrhotic alcoholic patients and matched control subjects. The alcoholic patients consumed an average of greater than 80 g of ethanol/day, the control subjects less than 20 g/day. Postmortem delays up to approximately 100 h caused no significant loss of any of the binding sites; the patient and subject groups were closely matched for age. The affinities (KD) of the receptor sites did not differ between the patient and subject groups, nor between cortical regions. Using three different radioligands ([3H]muscimol, [3H]flunitrazepam, and [3H]diazepam), the gamma-aminobutyric acidA/benzodiazepine receptor complex was found to have greater density (Bmax) in superior frontal gyrus in alcoholic patients (which selectively shows morphological change in alcoholic patients), but was unchanged in motor cortex. Alcoholic patients with cirrhosis had much less pronounced changes. The density of the N-methyl-D-aspartate subclass of glutamate receptors, assessed with [3H]MK-801, did not vary across patient and subject groups.