The Nevzorov Airborne Hot-Wire LWC–TWC Probe: Principle of Operation and Performance Characteristics
- 1 December 1998
- journal article
- Published by American Meteorological Society in Journal of Atmospheric and Oceanic Technology
- Vol. 15 (6) , 1495-1510
- https://doi.org/10.1175/1520-0426(1998)015<1495:tnahwl>2.0.co;2
Abstract
The Nevzorov liquid water content (LWC) and total water content (TWC) probe is a constant-temperature, hot-wire probe designed for aircraft measurements of the ice and liquid water content of clouds. The probe consists of two separate sensors for measurements of cloud liquid and total (ice plus liquid) water content. Each sensor consists of a collector and a reference winding. The reference sensors are shielded from impact with cloud particles, specifically to provide an automatic compensation for convective heat losses. This results in a potentially improved sensitivity over uncompensated probes such as the King LWC probe. The Nevzorov probe has been used in four Canadian field experiments on the National Research Council (NRC) Convair580 since 1994. Intercomparison of Nevzorov LWC, TWC, King, and two PMS Forward Scattering Spectrometer Probes show good agreement in liquid clouds, although the Nevzorov probe displays distinct advantages in low-LWC situations due to a more stable baseline. The se... Abstract The Nevzorov liquid water content (LWC) and total water content (TWC) probe is a constant-temperature, hot-wire probe designed for aircraft measurements of the ice and liquid water content of clouds. The probe consists of two separate sensors for measurements of cloud liquid and total (ice plus liquid) water content. Each sensor consists of a collector and a reference winding. The reference sensors are shielded from impact with cloud particles, specifically to provide an automatic compensation for convective heat losses. This results in a potentially improved sensitivity over uncompensated probes such as the King LWC probe. The Nevzorov probe has been used in four Canadian field experiments on the National Research Council (NRC) Convair580 since 1994. Intercomparison of Nevzorov LWC, TWC, King, and two PMS Forward Scattering Spectrometer Probes show good agreement in liquid clouds, although the Nevzorov probe displays distinct advantages in low-LWC situations due to a more stable baseline. The se...Keywords
This publication has 0 references indexed in Scilit: