Abstract
With the use of the method described in the preceding paper (to be referred to subsequently as I) for constructing the displacement fields, the electron microscope image contrast of small dislocation loops and of stacking-fault tetrahedra has been computed from numerical solutions of the Howie-Whelan (1961) equations. The computer-simulated images, displayed in the form of half-tone pictures, have been used to identify the nature and geometry of such defects in ion-irradiated foils. A systematic study of the contrast of small Frank loops in Cu + ion irradiated copper under a wide variety of diffraction conditions is reported. In particular the variations of the contrast of loops edge-on and inclined to the electron beam with the operating Bragg reflexion, the thickness and inclination of the foil, depth of the defect in the foil and deviation from the Bragg-reflecting condition have been studied. Methods of obtaining useful information, such as the diameters of the loops, are suggested. The contrast of stacking-fault tetrahedra, and of non-edge perfect dislocation loops in ion-irradiated molybdenum is also investigated.