Simulations of Ionic Liquids, Solutions, and Surfaces

Abstract
We have been using atomistic simulation for the last 10 years to study properties of imidazolium-based ionic liquids. Studies of dissolved molecules show the importance of electrostatic interactions in both aromatic and hydrogen-bonding solutes. However, the local structure strongly depends upon ion-ion and solute-solvent interactions. We find interesting local alignments of cations at the gas-liquid and solid-liquid interfaces, which give a potential drop through the surface. If the solid interface is charged, this charge is strongly screened over distances of a few nanometres and this screening decays on a fast time scale. We have studied the sensitivity of the liquid structure to force-field parameters and show that results from ab initio simulations can be used in the development of force fields.