Ridge estimation in logistic regression

Abstract
The variance of the Maximum Likelihood Estimator (MLE) of the slope parameter in a logistic regression model becomes large as the degree of collinearity among the explanatory variables increases. In a Monte Carlo study, we observed that a ridge type estimator is at least as good as, and often much better than, the MLE in terms of Total and Prediction Mean Squared Error criteria. Using a set of medical data it is illustrated that the ridge trace of the estimator considered here is a useful diagnostic tool in logistic regression analysis.

This publication has 12 references indexed in Scilit: