Abstract
A relationship has been established to express the local helicity of a polynucleotide backbone directly in terms of the virtual bonds spanning the conformationally equivalent heminucleotide repeats, with a view to provide a better understanding of the cumulative effects of all the chemical bond rotational variations on local helicity. Using this, an analysis made with a few oligodeoxynucleotide crystal structures clearly brings forth that it is the concerted movements manifested in the near neighbour correlations between the pair of chemical bonds C4′—C5′ and P—05′ and C4′-C3′ and P-03′ of the 5′ and 3′ heminucleotides respectively that are primarily responsible for the observed non-uniform helical twists both in A and B type helical backbones. That these need not be restricted to oligodeoxynucleotides but may be a feature of oligoribonucleotides backbone also is shown from an analysis of helical segments of yeast tRNAPhe. A proposal of a unified or a grand two dimensional conformational plot which would help visualise succinctly the overall effect of the variations in all the repeating six chemical bonds of a polynucleotide backbone is made. Apart from considerable simplification, the plot affords identification on it regions characteristic of helical, and loop and bend conformations of nucleic acid backbone chain.