Elementary intuitionistic theories
- 12 March 1973
- journal article
- Published by Cambridge University Press (CUP) in The Journal of Symbolic Logic
- Vol. 38 (1) , 102-134
- https://doi.org/10.2307/2271732
Abstract
The present paper concerns itself primarily with the decision problem for formal elementary intuitionistic theories and the method is primarily model-theoretic. The chief tool is the Kripke model for which the reader may find sufficient background in Fitting's book Intuitionistic logic model theory and forcing (North-Holland, Amsterdam, 1969). Our notation is basically that of Fitting, the differences being to favor more standard notations in various places.The author owes a great debt to many people and would particularly like to thank S. Feferman, D. Gabbay, W. Howard, G. Kreisel, G. Mints, and R. Statman for their valuable assistance.The method of elimination of quantifiers, which has long since proven its use in classical logic, has also been applied to intuitionistic theories (i) to demonstrate decidability ([9], [15], [17]), (ii) to prove the coincidence of an intuitionistic theory with its classical extension ([9], [17]), and (iii), as we will see below, to establish relations between an intuitionistic theory and its classical extension. The most general of these results is to be obtained from the method of Lifshits' quantifier elimination for the intuitionistic theory of decidable equality.Since the details of Lifshits' proof have not been published, and since the proof yields a more general result than that stated in his abstract [15], we include the proof and several corollaries.Keywords
This publication has 9 references indexed in Scilit:
- Andrzej Mostowski. An example of a non-axiomatizable many valued logic. Zeitschrift für mathematische Logik und Grundlagen der Mathematik, vol. 7 (1961), pp. 72–76.The Journal of Symbolic Logic, 1970
- Extending the Topological Interpretation to Intuitionistic Analysis, IIPublished by Elsevier ,1970
- Decidability of Second-Order Theories and Automata on Infinite TreesTransactions of the American Mathematical Society, 1969
- A Decision Method for the Intuitionistic Theory of successorIndagationes Mathematicae, 1968
- ELEMENTARY THEORIESRussian Mathematical Surveys, 1965
- Certain Logical Reduction and Decision ProblemsAnnals of Mathematics, 1956
- Solvable cases of the Decision Problem. By W. Ackermann. Pp. vii, 114. 24s. 1954. (North Holland Publishing Company, Amsterdam)The Mathematical Gazette, 1955
- Undecidable Theories. By A. Tarski, A. Mostowski. and R. M. Robinson. Pp. 98. 18s. 1953. Studies in Logic and the Foundations of Mathematics. (North Holland Co., Amsterdam)The Mathematical Gazette, 1954
- Propositional calculus and realizabilityTransactions of the American Mathematical Society, 1953