In vitro Metabolism of Genistein and Tangeretin by Human and Murine Cytochrome P450s
Open Access
- 26 June 2003
- journal article
- research article
- Published by Wiley in Basic & Clinical Pharmacology & Toxicology
- Vol. 93 (1) , 14-22
- https://doi.org/10.1034/j.1600-0773.2003.930102.x
Abstract
Recombinant cytochrome P450 (CYP) 1A2, 3A4, 2C9 or 2D6 enzymes obtained from Escherichia coli and human liver microsomes samples were used to investigate the ability of human CYP enzymes to metabolize the two dietary flavonoids, genistein and tangeretin. Analysis of the metabolic profile from incubations with genistein and human liver microsomes revealed the production of five different metabolites, of which three were obtained in sufficient amounts to allow a more detailed elucidation of the structure. One of these metabolites was identified as orobol, the 3′‐hydroxylated metabolite of genistein. The remaining two metabolites were also hydroxylated metabolites as evidenced by LC/MS. Orobol was the only metabolite formed after incubation with CYP1A2. The two major product peaks after incubation of tangeretin with human microsomes were identical with 4′‐hydroxy‐5,6,7,8‐tetramethoxyflavone and 5,6‐dihydroxy‐4′,7,8‐trimethoxyflavone, previously identified in rat urine in our laboratory. By comparison with UV spectra and LC/MS fragmentation patterns of previously obtained standards, the remaining metabolites eluting after 14, 17 and 20 min. were found to be demethylated at the 4′,7‐, 4′,6‐positions or hydroxylated at the 3′‐ and demethylated at the 4′‐positions, respectively. Metabolism of tangeretin by recombinant CYP1A2, 3A4, 2D6 and 2C9 resulted in metabolic profiles that qualitatively were identical to those observed in the human microsomes. Inclusion of the CYP1A2 inhibitor fluvoxamine in the incubation mixture with human liver microsomes resulted in potent inhibition of tangeretin and genistein metabolism. Other isozymes‐selective CYP inhibitors had only minor effects on tangeretin or genistein metabolism. Overall the presented observations suggest major involvement of CYP1A2 in the hepatic metabolism of these two flavonoids.Keywords
This publication has 26 references indexed in Scilit:
- Coexpression of a human P450 (CYP3A4) and P450 reductase generates a highly functional monooxygenase system in Escherichia coliPublished by Wiley ,1999
- Metabolism of Genistein by Rat and Human Cytochrome P450sChemical Research in Toxicology, 1999
- Influence of Tangeretin on Tamoxifen's Therapeutic Benefit in Mammary CancerJNCI Journal of the National Cancer Institute, 1999
- Differential effects of dietary flavonoids on drug metabolizing and antioxidant enzymes in female ratXenobiotica, 1999
- Detection of Weak Estrogenic Flavonoids Using a Recombinant Yeast Strain and a Modified MCF7 Cell Proliferation AssayChemical Research in Toxicology, 1998
- In vitrobiotransformation of flavonoids by rat liver microsomesXenobiotica, 1998
- Structure-antioxidant activity relationships of flavonoids and phenolic acidsFree Radical Biology & Medicine, 1996
- Genetic Polymorphism of Cytochromes P450 1A1, 2D6 and 2E1: Regulation and Toxicological SignificanceJournal of Occupational and Environmental Medicine, 1995
- Structural requirements for mutagenicity of flavonoids upon nitrosation. A structure—activity studyMutagenesis, 1995
- Study on the mutagenic activity of 13 bioflavonoids with the Salmonella Ara testMutagenesis, 1991