Combustion in High-Speed Direct Injection Diesel Engines—A Comprehensive Study

Abstract
This paper reports the latest results of a comprehensive project investigating the performance of a Ricardo Hydra direct injection diesel engine. Early work covered a number of aspects of research into the gross behaviour of this engine: this paper concentrates on techniques for obtaining quantitative data from photographs of the combustion process. High-speed photographs, at framing rates up to 20 000 frames/s, were taken using a piston with a quartz bowl, at engine speeds up to 3000 r/min. The pre-combustion period was illuminated using a synchronized copper vapour laser. After the initiation of combustion, the process is self-illuminating and information on the combustion process was obtained by analysing the radiation emitted by the carbon particles. The two-colour method was used to evaluate the temperature of the combustion gases over the full field of view. The images have also been analysed by a cross-correlation technique to obtain velocity information. Tests have been performed on the engine over a wide range of operating conditions, but this paper concentrates on the effect of swirl ratio on combustion. It will be shown that too much swirl increases the ignition delay period and results in an increase in the NOx emissions but a decrease in the soot. It will also be shown that the velocity pattern after combustion is in good agreement with that evaluated by Arcoumanis et al. at the end of compression, which implies that swirl persists through the combustion period despite significant decay.

This publication has 16 references indexed in Scilit: