Convective Asymmetries Associated with Tropical Cyclone Landfall. Part I:f-Plane Simulations
- 1 July 2003
- journal article
- Published by American Meteorological Society in Journal of the Atmospheric Sciences
- Vol. 60 (13) , 1560-1576
- https://doi.org/10.1175/1520-0469(2003)60<1560:caawtc>2.0.co;2
Abstract
This study investigates the physical processes associated with changes in the convective structure of a tropical cyclone (TC) during landfall using the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model, version 3 (MM5). The land surface is moved toward a spunup vortex at a constant zonal speed on an f plane. Four experiments are carried out with the following fluxes modified over land: turning off sensible heat flux, turning off moisture flux, setting a higher surface roughness, and combining the last two processes. The results suggest that sensible heat flux appears to show no appreciable effect while moisture supply is the dominant factor in modifying the convective structure. Prior to landfall, maximum precipitation is found to the front and left quadrants of the TC but to the front and right quadrants after landfall when moisture is turned off and surface roughness increased. To understand the physical processes involved, a conceptual experiment is carried out in which moisture supply only occurs over the ocean and at the lowest level of the atmosphere, and such supply is transported around by the averaged circulation of the TC. It is shown that the dry air over land is being advected up and around so that at some locations the stability of the atmosphere is reduced. Analyses of the data from the more realistic numerical experiments demonstrate that convective instability is indeed largest just upstream of where the maximum rainfall occurs. In other words, the effect of the change in moisture supply on the convection distribution during TC landfall is through the modification of the moist static stability of the atmosphere.Keywords
This publication has 23 references indexed in Scilit:
- Tropical Cyclone Intensity Change from a Simple Ocean–Atmosphere Coupled ModelJournal of the Atmospheric Sciences, 2001
- The Evolution of Hurricane Danny (1997) at Landfall: Doppler-Observed Eyewall Replacement, Vortex Contraction/Intensification, and Low-Level Wind MaximaMonthly Weather Review, 2000
- Hurricane Georges's Landfall in the Dominican Republic: Detailed Airborne Doppler Radar ImageryBulletin of the American Meteorological Society, 2000
- Landfalling Tropical Cyclones: Forecast Problems and Associated Research OpportunitiesBulletin of the American Meteorological Society, 1998
- The Step-Mountain Eta Coordinate Model: Further Developments of the Convection, Viscous Sublayer, and Turbulence Closure SchemesMonthly Weather Review, 1994
- Characteristics of Rainbands, Radar Echoes, and Lightning near the North Carolina Coast during GALEMonthly Weather Review, 1993
- A Nonhydrostatic Version of the Penn State–NCAR Mesoscale Model: Validation Tests and Simulation of an Atlantic Cyclone and Cold FrontMonthly Weather Review, 1993
- Numerical Study of Convection Observed during the Winter Monsoon Experiment Using a Mesoscale Two-Dimensional ModelJournal of the Atmospheric Sciences, 1989
- The Computation of Equivalent Potential TemperatureMonthly Weather Review, 1980
- A STUDY OF THE FILLING OF HURRICANE DONNA (1960) OVER LANDMonthly Weather Review, 1964