Abstract
The responses of tropical clouds and water vapor to SST variations are investigated with simple numerical experiments. The fifth-generation Pennsylvania State University–National Center for Atmospheric Research (PSU–NCAR) Mesoscale Model is used with doubly periodic boundary conditions and a uniform constant sea surface temperature (SST). The SST is varied and the equilibrium statistics of cloud properties, water vapor, and circulation at different temperatures are compared. The top of the atmosphere (TOA) radiative fluxes have the same sensitivities to SST as in observations averaged from 20°N to 20°S over the Pacific, suggesting that the model sensitivities are realistic. As the SST increases, the temperature profile approximately follows a moist-adiabatic lapse rate. The rain rate and cloud ice amounts increase with SST. The average relative humidity profile stays approximately constant, but the upper-tropospheric relative humidity increases slightly with SST. The clear-sky mean temperature and water vapor feedbacks have similar magnitudes to each other and opposite signs. The net clear-sky feedback is thus about equal to the lapse rate feedback, which is about −2 W m−2 K−1. The clear-sky outgoing longwave radiation (OLR) thus increases with SST, but the high cloud-top temperature is almost constant with SST, and the high cloud amount increases with SST. The result of these three effects is an increase of cloud longwave forcing with SST and a mean OLR that is almost independent of SST. The high cloud albedo remains almost constant with increasing SST, but the increase in high cloud area causes a negative shortwave cloud radiative forcing feedback, which partly cancels the longwave cloud feedback. The net radiation decreases slightly with SST, giving a small net negative feedback, implying a stable, but very sensitive climate.

This publication has 53 references indexed in Scilit: