Wave functions constructed from an invariant sum over histories satisfy constraints

Abstract
Invariance of classical equations of motion under a group parametrized by functions of time implies constraints between canonical coordinates and momenta. In the Dirac formulation of quantum mechanics, invariance is normally imposed by demanding that physical wave functions are annihilated by the operator versions of these constraints. In the sum-over-histories quantum mechanics, however, wave functions are specified, directly, by appropriate functional integrals. It therefore becomes an interesting question whether the wave functions so specified obey the operator constraints of the Dirac theory. In this paper, we show for a wide class of theories, including gauge theories, general relativity, and first-quantized string theories, that wave functions constructed from a sum over histories are, in fact, annihilated by the constraints provided that the sum over histories is constructed in a manner which respects the invariance generated by the constraints. By this we mean a sum over histories defined with an invariant action, invariant measure, and an invariant class of paths summed over.