Balancing Solvation and Intramolecular Interactions: Toward a Consistent Generalized Born Force Field
Top Cited Papers
- 1 March 2006
- journal article
- research article
- Published by American Chemical Society (ACS) in Journal of the American Chemical Society
- Vol. 128 (11) , 3728-3736
- https://doi.org/10.1021/ja057216r
Abstract
The efficient and accurate characterization of solvent effects is a key element in the theoretical and computational study of biological problems. Implicit solvent models, particularly generalized Born (GB) continuum electrostatics, have emerged as an attractive tool to study the structure and dynamics of biomolecules in various environments. Despite recent advances in this methodology, there remain limitations in the parametrization of many of these models. In the present work, we demonstrate that it is possible to achieve a balanced implicit solvent force field by further optimizing the input atomic radii in combination with adjusting the protein backbone torsional energetics. This parameter optimization is guided by the potentials of mean force (PMFs) between amino acid polar groups, calculated from explicit solvent free energy simulations, and by conformational equilibria of short peptides, obtained from extensive folding and unfolding replica exchange molecular dynamics (REX-MD) simulations. Through the application of this protocol, the delicate balance between the competing solvation forces and intramolecular forces appears to be better captured, and correct conformational equilibria for a range of both helical and β-hairpin peptides are obtained. The same optimized force field also successfully folds both beta-hairpin trpzip2 and mini-protein Trp-Cage, indicating that it is quite robust. Such a balanced, physics-based force field will be highly applicable to a range of biological problems including protein folding and protein structural dynamics.Keywords
This publication has 83 references indexed in Scilit:
- Empirical force fields for biological macromolecules: Overview and issuesJournal of Computational Chemistry, 2004
- Extending the treatment of backbone energetics in protein force fields: Limitations of gas‐phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulationsJournal of Computational Chemistry, 2004
- Free energy landscape of protein folding in water: Explicit vs. implicit solventProteins-Structure Function and Bioinformatics, 2003
- An Orientation-dependent Hydrogen Bonding Potential Improves Prediction of Specificity and Structure for Proteins and Protein–Protein ComplexesJournal of Molecular Biology, 2003
- Using PC clusters to evaluate the transferability of molecular mechanics force fields for proteinsJournal of Computational Chemistry, 2002
- Computer-aided design of β-sheet peptidesJournal of Molecular Biology, 2001
- Replica-exchange molecular dynamics method for protein foldingChemical Physics Letters, 1999
- All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of ProteinsThe Journal of Physical Chemistry B, 1998
- CHARMM: A program for macromolecular energy, minimization, and dynamics calculationsJournal of Computational Chemistry, 1983
- Calculation of the electric potential in the active site cleft due to α-helix dipolesJournal of Molecular Biology, 1982