Gravitational-Wave Inspiral of Compact Binary Systems to 7/2 Post-Newtonian Order

Abstract
The inspiral of compact binaries, driven by gravitational-radiation reaction, is investigated through 7/2 post-Newtonian (3.5PN) order beyond the quadrupole radiation. We outline the derivation of the 3.5PN-accurate binary's center-of-mass energy and emitted gravitational flux. The analysis consistently includes the relativistic effects in the binary's equations of motion and multipole moments, as well as the contributions of tails, and tails of tails, in the wave zone. However the result is not fully determined because of some physical incompleteness, present at the 3PN order, of the model of point-particle and the associated Hadamard-type self-field regularization. The orbital phase, whose prior knowledge is crucial for searching and analyzing the inspiral signal, is computed from the standard energy balance argument.

This publication has 0 references indexed in Scilit: