Genetic Detection and Characterization of Lujo Virus, a New Hemorrhagic Fever–Associated Arenavirus from Southern Africa

Top Cited Papers
Open Access
Abstract
Lujo virus (LUJV), a new member of the family Arenaviridae and the first hemorrhagic fever–associated arenavirus from the Old World discovered in three decades, was isolated in South Africa during an outbreak of human disease characterized by nosocomial transmission and an unprecedented high case fatality rate of 80% (4/5 cases). Unbiased pyrosequencing of RNA extracts from serum and tissues of outbreak victims enabled identification and detailed phylogenetic characterization within 72 hours of sample receipt. Full genome analyses of LUJV showed it to be unique and branching off the ancestral node of the Old World arenaviruses. The virus G1 glycoprotein sequence was highly diverse and almost equidistant from that of other Old World and New World arenaviruses, consistent with a potential distinctive receptor tropism. LUJV is a novel, genetically distinct, highly pathogenic arenavirus. In September and October 2008, five cases of undiagnosed hemorrhagic fever, four of them fatal, were recognized in South Africa after air transfer of a critically ill index case from Zambia. Serum and tissue samples from victims were subjected to unbiased pyrosequencing, yielding within 72 hours of sample receipt, multiple discrete sequence fragments that represented approximately 50% of a prototypic arenavirus genome. Thereafter, full genome sequence was generated by PCR amplification of intervening fragments using specific primers complementary to sequence obtained by pyrosequencing and a universal primer targeting the conserved arenaviral termini. Phylogenetic analyses confirmed the presence of a new member of the family Arenaviridae, provisionally named Lujo virus (LUJV) in recognition of its geographic origin (Lusaka, Zambia, and Johannesburg, South Africa). Our findings enable the development of specific reagents to further investigate the reservoir, geographic distribution, and unusual pathogenicity of LUJV, and confirm the utility of unbiased high throughput pyrosequencing for pathogen discovery and public health.