Coexistence of Long-Range Order and Spin Fluctuation in Geometrically Frustrated ClinoatacamiteCu2Cl(OH)3

Abstract
Muon spin rotation experiments are carried out on clinoatacamite, Cu2Cl(OH)3, which is a new geometrically frustrated system featuring a three-dimensional network of corner-sharing tetrahedral 3d Cu2+ spins. A long-range antiferromagnetic order occurs below 18.1 K with a surprisingly small entropy release of about 0.05Rln2/Cu. Below 6.5 K, the static long-range order transforms abruptly into a metastable state with nearly complete depolarization of muon spins which suggests strong fluctuation. The system then enters a state in which partial long-range order and spin fluctuation coexist down to the lowest experimentally attainable temperature of 20 mK. This work presents a novel system for studying geometric frustration.