Abstract
Experimental and theoretical studies of an optically pumped electric discharge laser in helium-nitrogen mixtures are described. While the inherent efficiency of this system is rather low, these studies illustrate the basic parameters controlling the dynamics and efficiency of such a laser. In the experiments, intense diffuse discharges were obtained at pressures up to 12 atm and amplified spontaneous emission along the axis of the discharge was observed. The numerical modeling studies showed qualitative agreement with the experimental data and gave an optimized value of the kinetic coupling efficiency (absorbed 10.6-μ power to uv laser power) of 1.6% and of the total efficiency (energy stored in the TEA laser supply to uv output energy) of 0.1–0.2%.