Phenomenological model relating cell shape to water reabsorption in proximal nephron

Abstract
If the complex pattern of intercellular channels in proximal tubule is determined in part by the forces of large transepithelial water flow, the shape of the cells is an indicator of the type and magnitude of the forces required for water movement and the routes of that flow. To test this thesis, morphologic data and volume flow parameters for rabbit proximal tubule are related generally by a mass balance equation. If the intercellular boundaries are assumed to be highly deformable and to respond to changes in hydrostatic pressure, the solution to that equation is a simple relationship between cell shape and the forces required for water movement. The resulting phenomenological model suggests an important new role for peritubular serum proteins and can be used to compute reasonable values for cell wall hydraulic conductivity, intercellular protein diffusion constant, and a channel fluid osmolality not more than 1% greater than that of luminal fluid. It is concluded that quantitative morphologic studies may serve as a powerful means for evaluating and understanding transport phenomena in the nephron.

This publication has 1 reference indexed in Scilit: