An accurate intermolecular potential for helium

Abstract
A simple realistic and precise empirical intermolecular potential is proposed for helium. It possesses nearly the correct Hartree–Fock repulsion as well as the correct long range behavior. It was fitted to recent accurate intermediate temperature second virial coefficients and thermal conductivity data as well as high temperature viscosity values. It is able to predict second virial coefficients over an extended temperature range from 1.5 to 1475 K. Above 100 K it reproduces substantially all of the transport properties to within experimental error in a manner superior to all other potentials in existence. Below 100 K where the transport data are less reliable, it produces a good representation of the isotopic differences in the viscosity. It also predicts differential cross sections reasonably well. In spite of a few remaining discrepancies, when all the different macroscopic properties are considered, the potential produces the best representation of the helium interaction available at this time.