Adenosine-sensitive phosphoinositide turnover in a newly established renal cell line
- 1 June 1989
- journal article
- Published by American Physiological Society in American Journal of Physiology-Renal Physiology
- Vol. 256 (6) , F1067-F1074
- https://doi.org/10.1152/ajprenal.1989.256.6.f1067
Abstract
To aid in characterizing adenosine receptors in renal cells, primary cultures of rabbit cortical collecting tubule (RCCT) cells were infected with an adenovirus 12-simian virus 40 hybrid, resulting in a continuous cell line. The cells, designated RCCT-28A, retained their epithelial morphology and reacted with a monoclonal antibody specific for rabbit collecting tubule. Adenosine 3',5'-cyclic monophosphate (cAMP) accumulation was stimulated by vasopressin (AVP), isoproterenol, prostaglandin E2 (PGE2), calcitonin, parathyroid hormone, and a potent adenosine A1- and A2-receptor agonist, 5'-N-ethylcarboxamidoadenosine (NECA). A more selective adenosine A1-receptor agonist, N6-cyclohexyl adenosine (CHA) inhibited basal and AVP-stimulated cAMP accumulation. Cytosolic free calcium was transiently elevated by bradykinin, PGE2, NECA, and CHA. To examine the mechanism by which adenosine analogues increase intracellular free calcium, phosphoinositide (PI) turnover was assessed in the 28A cells after labeling with myo-[3H]inositol. NECA and CHA increased [3H]inositol phosphate formation with an approximate half-maximal effective concentration of 0.1 microM for both analogues. The increase in PI turnover was blocked by the selective adenosine A1-receptor antagonist, 8-cyclopentyl-1,3-dipropylxanthine and pretreatment of the 28A cells with pertussis toxin. These results suggest that adenosine analogues increase cytosolic free calcium by stimulating PI turnover.Keywords
This publication has 0 references indexed in Scilit: