Synthesis and self-assembly of a functional monoclonal antibody in transgenic Nicotiana tabacum

Abstract
Immunoglobulin light and heavy chains are synthesized in mammalian cells as precursors containing a signal peptide. Processing and assembling result in formation of active antibodies. Chimeric genes have been made containing the coding sequence of the barley α-amylase signal peptide which has been fused to cDNAs coding for either the mature light or the mature heavy chain of a monoclonal antibody. A plasmid was constructed linking both chimeric genes under the control of plant active promoters in an expression cassette. This DNA fragment was stably integrated into the genome of Nicotiana tabacum by Agrobacterium tumefaciens mediated gene transfer. Synthesis of light and heavy chains and assembly to antibodies was detected in transgenic tobacco tissue using specific secondary antibodies. By electron microscopic immunogold labeling, the presence of assembled antibody could be detected within the endoplasmic reticulum. Affinity chromatography indicated biological activity of the assembled immunoglobulin produced in plant cells. Unexpectedly, a significant amount of assembled antibodies was found within chloroplasts.