Inactivation and Block of Calcium Channels by Photo-Released Ca 2+ in Dorsal Root Ganglion Neurons

Abstract
Calcium channels are inactivated by voltage and intracellular calcium. To study the kinetics and the mechanism of calcium-induced inactivation of calcium channels, a "caged" calcium compound, dimethoxy-nitrophen was used to photo-release about 50 μ M calcium ion within 0.2 millisecond in dorsal root ganglion neurons. When divalent cations were the charge carriers, intracellular photo-release of calcium inactivated the calcium channel with an invariant rate [time constant (τ) ≈ 7 milliseconds]. When the monovalent cation sodium was the charge carrier, photorelease of calcium inside or outside of the cell blocked the channel rapidly (τ ≈ 0.4 millisecond), but the block was greater from the external side. Thus the kinetics of calcium-induced calcium channel inactivation depends on the valency of the permeant cation. The data imply that calcium channels exist in either of two conformational states, the calcium- and sodium-permeant forms, or, alternatively, calcium-induced inactivation occurs at a site closely associated with the internal permeating site.