Hess Deep rift valley structure from seismic tomography

Abstract
We present results from a seismic refraction experiment conducted across the Hess Deep rift valley in the equatorial east Pacific. P wave travel times between seafloor explosions and ocean bottom seismographs are analyzed using an iterative stochastic inverse method to produce a velocity model of the subsurface structure. The resulting velocity model differs from typical young, fast spreading, East Pacific Rise crust by approximately ±1 km/s with slow velocities beneath the valley of the deep and a fast region forming the intrarift ridge. We interpret these velocity contrasts as lithologies originating at different depths and/or alteration of the preexisting rock units. We use our seismic model, along with petrologic and bathymetric data from previous studies, to produce a structural model. The model supports low‐angle detachment faulting with serpentinization of peridotite as the preferred mechanism for creating the distribution and exposure of lower crustal and upper mantle rocks within Hess Deep.