Scaling laws in aggregation: Fragmentation models with detailed balance
- 1 July 1987
- journal article
- research article
- Published by American Physical Society (APS) in Physical Review A
- Vol. 36 (1) , 435-437
- https://doi.org/10.1103/physreva.36.435
Abstract
Coagulation processes may be balanced by very slow breakup reactions that lead to a self-similar stationary cluster size distribution, as recently described by Family, Meakin, and Deutch (FMD [Phys. Rev. Lett. 57, 727 (1986); 57, 2332 (1986)]. Here, a class of reversible coagulation-fragmentation models is presented that satisfies detailed balance, for which the scaling functions can be calculated explicitly. The FMD models do not have the property of detailed balance in general.Keywords
This publication has 8 references indexed in Scilit:
- Kinetics of Coagulation with Fragmentation: Scaling Behavior and FluctuationsPhysical Review Letters, 1986
- Kinetics of Coagulation with Fragmentation: Scaling Behavior and FluctuationsPhysical Review Letters, 1986
- Kinetics of reversible polymerizationJournal of Statistical Physics, 1984
- Fluctuation effects in Smoluchowski reaction kineticsPhysical Review A, 1984
- Smoluchowski's equation and the θ-exponent for branched polymersJournal of Physics A: General Physics, 1984
- Evolution of coagulating systemsJournal of Colloid and Interface Science, 1973
- ON AN INFINITE SET OF NON-LINEAR DIFFERENTIAL EQUATIONSThe Quarterly Journal of Mathematics, 1962
- Note on the Kinetics of Systems Manifesting Simultaneous Polymerization-Depolymerization PhenomenaThe Journal of Physical Chemistry, 1945