Abstract
For the purposes of dose limitation and dose control, the harm, or detriment, of exposure to radiation is assessed by the quantity effective dose. Effective dose is evaluated by the application of factors to the averaged absorbed dose in the organs and tissues of the body. Radiation monitoring instruments are generally calibrated in terms of the quantity ambient dose equivalent which is defined in a simple spherical phantom. The relationship of these quantities is described. Requirements for the radiation protection of aircraft crew are given in the European Union Council Directive 96/29/EURATOM. There are requirements to assess the exposure of aircraft crew, to inform them of health risks, to reduce higher doses, and to control the dose to the foetus. There are no explicit dose limits, other than a dose objective to be applied to the exposure of the foetus, and no requirements for designation of areas or classification of workers. There are significant differences between the exposure condition of aircraft crew and workers in most other industries where there is occupational exposure to radiation. There are greater ranges of radiation types and energy, and there are different dose distributions and characteristics of the working populations. However, the field intensity is predictable and, with the exception of rare solar events, there is no risk of significant unexpected exposures. Dose assessment is anticipated to be by folding staff roster information with estimates of route doses, since there is little variability of dose rate within an aircraft. Route doses, which may be either an agreed average value for a given airport pairing and aircraft type, or be flight specific, will be closely linked to measured values. Requirements as to the accuracy of dose assessment should be applied which are broadly similar to those used in individual monitoring generally.

This publication has 0 references indexed in Scilit: