Mathematical tools for counting polytypes
- 1 February 1981
- journal article
- Published by Walter de Gruyter GmbH in Zeitschrift für Kristallographie - Crystalline Materials
- Vol. 155 (3-4) , 227-245
- https://doi.org/10.1524/zkri.1981.155.3-4.227
Abstract
Pólya's theory of counting is a method for counting colorings of a set under the action of a group. It can be used to enumerate polytypes of numerous compounds: close-packings, ZnS, CdI2, SiC, ferrites, micas, kaolinites, cronstedtites and chlorites. This paper is a discussion of the mathematical basis of Pólya's theory.Keywords
This publication has 10 references indexed in Scilit:
- The combinatorics of cation-deficient close-packed structuresJournal of Solid State Chemistry, 1978
- Classifying patterns by automorphism group: An operator theoretic approachDiscrete Mathematics, 1975
- Counting patterns with a given automorphism groupProceedings of the American Mathematical Society, 1975
- Systematic derivation of inorganic basic structure types: XmYnand AmXncompounds, X and Y in cubic or hexagonal close packing, A in octahedral voidsZeitschrift für Kristallographie, 1969
- On Pólya's TheoremCanadian Journal of Mathematics, 1967
- The power group enumeration theoremJournal of Combinatorial Theory, 1966
- Mica Polytypes: Systematic Description and IdentificationScience, 1966
- Framework structures formed from parallel four- and eight-membered ringsMineralogical Magazine and Journal of the Mineralogical Society, 1962
- Generalization of polya’s fundamental theorem in enumerative combinatorial analysisIndagationes Mathematicae, 1959
- Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und chemische VerbindungenActa Mathematica, 1937