Different rates of (non-)synonymous mutations in astrovirus genes; correlation with gene function
Open Access
- 7 March 2007
- journal article
- Published by Springer Nature in Virology Journal
- Vol. 4 (1) , 25
- https://doi.org/10.1186/1743-422x-4-25
Abstract
Complete genome sequences of the Astroviridae include human, non-human mammalian and avian species. A consensus topology of astroviruses has been derived from nucleotide substitutions in the full-length genomes and from non-synonymous nucleotide substitutions in each of the three ORFs. Analyses of synonymous substitutions displayed a loss of tree structure, suggesting either saturation of the substitution model or a deviant pattern of synonymous substitutions in certain virus species. We analyzed the complete Astroviridae family for the inference of adaptive molecular evolution at sites and in branches. High rates of synonymous mutations are observed among the non-human virus species. Deviant patterns of synonymous substitutions are found in the capsid structural genes. Purifying selection is a dominant force among all astrovirus genes and only few codon sites showed values for the dN/dS ratio that may indicate site-specific molecular adaptation during virus evolution. One of these sites is the glycine residue of a RGD motif in ORF2 of human astrovirus serotype 1. RGD or similar integrin recognition motifs are present in nearly all astrovirus species. Phylogenetic analysis directed by maximum likelihood approximation allows the inclusion of significantly more evolutionary history and thereby, improves the estimation of dN and dS. Sites with enhanced values for dN/dS are prominent at domains in charge of environmental communication (f.i. VP27 and domain 4 in ORF1a) more than at domains dedicated to intrinsic virus functions (f.i. VP34 and ORF1b (the virus polymerase)). Integrin recognition may play a key role in astrovirus to target cell attachment.Keywords
This publication has 38 references indexed in Scilit:
- PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignmentsNucleic Acids Research, 2006
- Molecular characterization of human astroviruses isolated in Brazil, including the complete sequences of astrovirus genotypes 4 and 5Archiv für die gesamte Virusforschung, 2006
- Human astrovirus diagnosis and typing: current and future prospectsLetters in Applied Microbiology, 2005
- Recurrent mutations associated with isolation and passage of SARS coronavirus in cells from non‐human primatesJournal of Medical Virology, 2005
- Bayes Empirical Bayes Inference of Amino Acid Sites Under Positive SelectionMolecular Biology and Evolution, 2005
- MUSCLE: multiple sequence alignment with high accuracy and high throughputNucleic Acids Research, 2004
- Complete genomic sequences of astroviruses from sheep and turkey: comparison with related virusesVirus Research, 2003
- Characterisation of a South African human astrovirus as type 8 by antigenic and genetic analysesJournal of Medical Virology, 2001
- Molecular characterisation of the 3′-end of the astrovirus genomeArchiv für die gesamte Virusforschung, 1997
- Tree View: An application to display phylogenetic trees on personal computersBioinformatics, 1996