The Effect of Heat Treatment on the Corrosion Behavior of Amorphous Mg–Ni–Nd Alloys

Abstract
The effect of heat treatment on the corrosion behavior of seven amorphous melt-spun Mg–Ni–Nd alloys containing 10–20 at.% Ni and 5–15 at.% Nd has been studied. Hydrogen evolution testing was used to determine the dissolution rate of the heat-treated specimens immersed in a 3% NaCl solution saturated with Mg(OH)2. The dissolution rates of the partially crystallized specimens were found to be lower than those of the untreated specimens, while the fully crystallized specimens exhibited marked deterioration of corrosion resistance. X-ray diffraction (XRD) and transmission electron microscopy (TEM) studies on the heat-treated specimens revealed precipitation of Mg3Nd, Mg12Nd, and Mg2Ni phases during the crystallization. TEM results show that the partially crystallized structure consists of uniform dispersion of either Mg3Nd or Mg2Ni in the amorphous matrix. In contrast, multiple phases precipitate in the fully crystallized specimen.