Development of Alveolar Septa and Formation of Alveolar Pores during the Early Postnatal Period in the Rat Lung

Abstract
In order to investigate the formation of alveolar pores, lungs of rats, after intratracheal perfusion of glutaraldehyde, are processed at postnatal days 1,1,14,16 and 21 for light and transmission electron microscopy and at days 7 and 16 for scanning electron microscopy. The initial low secondary crests of day 1 rapidly elongate to pleats subdividing the primary saccules. The ledges of some pleats partly grow toward each other as ring like diaphragms, leaving openings whose boundary is composed of alveolar epithelium separated by a basal lamina from a connective tissue sheath with capillaries. At day 7, in scanning electron microscopy the lumina of some rudimentary alveoli communicate by apertures of different sizes, as a result of the outgrowth of curved alveolar pleats which narrow to a ringlike aperture. The interalveolar openings observed in scanning electron microscopy resemble those investigated by light and transmission electron microscopy. The number of interalveolar pores increases from day 7 on; they become more and more frequent at days 14,16 and 21, respectively. It appears that alveolar multiplication in newborn rats proceeds not only by segmentation of terminal respiratory units but also by compoundment of septa. The difference between genuine pores and transsections of folds in transmission electron microscopy will be given closer attention in this study. Also, the incidence and location of type II pneumocytes during rapid enlargement of the alveolar surface area is discussed.