Evidence that TRPM8 Is an Androgen-Dependent Ca2+ Channel Required for the Survival of Prostate Cancer Cells

Abstract
The Ca2+-permeable channel TRPM8 is thought to play an important role in the pathophysiology of prostate cancer. We have investigated the intracellular location of TRPM8 and its role as a Ca2+-permeable channel in an androgen-responsive and an androgen-insensitive prostate cancer cell line. We report evidence from immunofluorescence experiments that in the androgen-responsive LNCaP cell line, the TRPM8 protein is expressed in the endoplasmic reticulum and plasma membrane, acts as a Ca2+-permeable channel (assessed using Fura-2 to measure increases in the cytoplasmic Ca2+ concentration) in each of these membranes, and is regulated by androgen. Although TRPM8 was detected in the androgen-insensitive PC-3 cell line, no evidence was obtained for regulation of its expression by androgen. The results of experiments using LNCaP cells, the TRPM8 antagonist capsazepine, and small interference RNA targeted to TRPM8 indicate that TRPM8 is required for cell survival. These results indicate that TRPM8 is an important determinator of Ca2+ homeostasis in prostate epithelial cells and may be a potential target for the action of drugs in the management of prostate cancer.