Universal Non-Gaussian Velocity Distribution in Violent Gravitational Processes

  • 26 June 2004
Abstract
We study the velocity distribution in spherical collapses and cluster-pair collisions by use of N-body simulations. Reflecting the violent gravitational processes, the velocity distribution of the resultant quasi-stationary state generally becomes non-Gaussian. Through the strong mixing of the violent process, there appears a universal non-Gaussian velocity distribution, which is an equal-weighted superposition of many Gaussian distributions. This is deeply related with the local virial equilibrium and the linear mass-temperature relation which characterize the system. We show the robustness of this distribution function against various initial conditions which leads to the violent gravitational process. The DT distribution has a positive correlation with the energy fluctuation of the system. On the other hand, the coherent motion such as the radial motion in the spherical collapse and the rotation with the angular momentum suppress the appearance of the DT distribution.

This publication has 0 references indexed in Scilit: