Menadione-Induced Oxidative Stress Inhibits Cholecystokinin-Stimulated Secretion of Pancreatic Acini by Cell Dehydration

Abstract
The present study evaluated the effects of free radicals generated by menadione on morphology and function of pancreatic acinar cells focusing on enzyme secretion, stimulus-secretion coupling, and cell hydration. Various experiments evaluated morphology and function of isolated rat pancreatic acinar cells exposed to menadione. Menadione instantaneously generated free radicals (luminol and deoxyribose assays) followed by a time-dependent cell injury (uptake of trypan blue). Early ultrastructural changes included vacuolization and alterations of mitochondria, endoplasmic reticulum, and nucleus. Menadione caused a rapid glutathione oxidation followed by a depletion in reduced glutathione. An increase in lipid peroxides and a depletion of adenosine triphosphate were seen only after 30-60 minutes. Menadione markedly inhibited amylase release stimulated by cholecystokinin (CCK) and carbachol and simultaneously caused cell shrinkage after a few minutes. Similar degrees of cell shrinkage induced by hyperosmolar incubation and by menadione inhibited amylase secretion to a similar extent. CCK binding and its effect on calcium and inositol 1,4,5-trisphosphate (IP3) were not affected by menadione. Menadione (without CCK) induced an instantaneous increase of intracellular calcium followed by a slow constant increase. In single cells, menadione induced calcium oscillations with a frequency lower than that seen after CCK stimulation. Some morphologic and functional alterations owing to menadione-induced oxidative stress may be caused by adenosine triphosphate and glutathione depletion, lipid peroxidation, and changes in cytosolic calcium. The marked inhibition of secretagogue-stimulated enzyme secretion owing to menadione may be mediated to a large part by cell dehydration, whereas classical steps of stimulus-secretion coupling like receptor binding, calcium release, and IP3 generation remained unchanged.