Abstract
Recent advances in blood-brain barrier (BBB) research have led to a new understanding of drug transport processes at the BBB. The BBB acts as a dynamic regulatory interface at which nutrients necessary for neural activity are actively taken up into the brain from the blood circulation, and actively excludes metabolites that might interfere with the maintenance of brain homeostasis. Such influx and efflux transport functions at the BBB would also control the concentrations of various drugs in the brain interstitial fluid (ISF), which are an important determinant of the central nervous system (CNS) effects. Thus, direct measurement of the brain ISF concentration of drugs can provide significant information for clarifying the influx and efflux transport functions of drugs across the BBB. Although several experimental techniques have been developed to investigate transport functions across the BBB, in vivo brain microdialysis seems to be one of the most suitable techniques for characterizing the influx and efflux transport functions across the BBB under physiological and pathological conditions. This review covers studies during the past decade, in which the influx and efflux transport of drugs across the BBB was kinetically and mechanistically evaluated by means of the brain microdialysis technique. Some applications of brain microdialysis to studies on neuronal function and neurotherapeutics are also included.

This publication has 58 references indexed in Scilit: