Prodrugs of L-cysteine as protective agents against acetaminophen-induced hepatotoxicity. 2-(Polyhydroxyalkyl)- and 2-(polyacetoxyalkyl)thiazolidine-4(R)-carboxylic acids
- 1 October 1987
- journal article
- research article
- Published by American Chemical Society (ACS) in Journal of Medicinal Chemistry
- Vol. 30 (10) , 1891-1896
- https://doi.org/10.1021/jm00393a034
Abstract
Eight prodrugs of L-cysteine (1a-h) were synthesized by the condensation of the sulfhydryl amino acid with naturally occurring aldose monosaccharides containing three, five, and six carbon atoms. The resulting 2-(polyhydroxyalkyl)thiazolidine-4(R)-carboxylic acids (TCAs) are capable of releasing L-cysteine and the sugars by nonenzymatic ring opening and hydrolysis. Thus, when added to rat hepatocyte preparations in vitro, these TCAs (1.0 mM) raised cellular glutathione (GSH) levels 1.2-2.1-fold relative to controls. On the basis of this finding, the cysteine prodrugs were tested as protective agents against acetaminophen-induced hepatotoxicity in a mouse model. The TCA derived from D-ribose and L-cysteine (RibCys, 1d) showed the greatest therapeutic promises of the series, with a 100%(12/12) survival profile compared to 17% without treatment. However, the degree of stimulation of GSH production in rat hepatocytes by these prodrugs did not correlate with the extent of protection afforded in mice, suggesting that pharmacokinetic parameters must supervene in vivo. To evaluate the effect of increased lipid solubility, we prepared prodrugs 2a-c by using peracetylated aldehyde sugars in the condensation reaction. These compounds, however, displayed acute toxicity to mice, possibly due to liberation of the acetylated sugars themselves. Nevertheless, the efficacy of the unacetylated TCAs, and RibCys (1d) in particular, suggests that the prodrug approach for the delivery of L-cysteine to the liver represents a viable means of augmenting existing detoxication mechanisms in protecting cells against xenobiotic substances that are bioactivated to toxic, reactive metabolites.This publication has 3 references indexed in Scilit:
- Potent and specific inhibition of glutathione synthesis by buthionine sulfoximine (S-n-butyl homocysteine sulfoximine).Published by Elsevier ,2021
- Mechanism of Action of N-Acetylcysteine in the Protection Against the Hepatotoxicity of Acetaminophen in Rats In VivoJournal of Clinical Investigation, 1983
- Intracellular cysteine delivery system that protects against toxicity by promoting glutathione synthesis.Proceedings of the National Academy of Sciences, 1982