Genomewide analysis of nucleosome density histone acetylation and HDAC function in fission yeast
Open Access
- 4 August 2005
- journal article
- research article
- Published by Springer Nature in The EMBO Journal
- Vol. 24 (16) , 2906-2918
- https://doi.org/10.1038/sj.emboj.7600758
Abstract
We have conducted a genomewide investigation into the enzymatic specificity, expression profiles, and binding locations of four histone deacetylases (HDACs), representing the three different phylogenetic classes in fission yeast ( Schizosaccharomyces pombe ). By directly comparing nucleosome density, histone acetylation patterns and HDAC binding in both intergenic and coding regions with gene expression profiles, we found that Sir2 (class III) and Hos2 (class I) have a role in preventing histone loss; Clr6 (class I) is the principal enzyme in promoter‐localized repression. Hos2 has an unexpected role in promoting high expression of growth‐related genes by deacetylating H4K16Ac in their open reading frames. Clr3 (class II) acts cooperatively with Sir2 throughout the genome, including the silent regions: rDNA, centromeres, mat2/3 and telomeres. The most significant acetylation sites are H3K14Ac for Clr3 and H3K9Ac for Sir2 at their genomic targets. Clr3 also affects subtelomeric regions which contain clustered stress‐ and meiosis‐induced genes. Thus, this combined genomic approach has uncovered different roles for fission yeast HDACs at the silent regions in repression and activation of gene expression.Keywords
This publication has 40 references indexed in Scilit:
- Conserved Locus-Specific Silencing Functions of Schizosaccharomyces pombe sir2+Genetics, 2005
- Global Position and Recruitment of HATs and HDACs in the Yeast GenomeMolecular Cell, 2004
- Evidence for nucleosome depletion at active regulatory regions genome-wideNature Genetics, 2004
- A DNA microarray for fission yeast: minimal changes in global gene expression after temperature shiftYeast, 2003
- Requirement of Hos2 Histone Deacetylase for Gene Activity in YeastScience, 2002
- Microarray Deacetylation Maps Determine Genome-Wide Functions for Yeast Histone DeacetylasesCell, 2002
- Functional Divergence between Histone Deacetylases in Fission Yeast by Distinct Cellular Localization and In Vivo SpecificityMolecular and Cellular Biology, 2002
- Highly Specific Antibodies Determine Histone Acetylation Site Usage in Yeast Heterochromatin and EuchromatinMolecular Cell, 2001
- Phylogenetic Classification of Prokaryotic and Eukaryotic Sir2-like ProteinsBiochemical and Biophysical Research Communications, 2000