Lessons from an evolving rRNA: 16S and 23S rRNA structures from a comparative perspective.
- 1 March 1994
- journal article
- review article
- Vol. 58 (1) , 10-26
Abstract
The 16S and 23S rRNA higher-order structures inferred from comparative analysis are now quite refined. The models presented here differ from their immediate predecessors only in minor detail. Thus, it is safe to assert that all of the standard secondary-structure elements in (prokaryotic) rRNAs have been identified, with approximately 90% of the individual base pairs in each molecule having independent comparative support, and that at least some of the tertiary interactions have been revealed. It is interesting to compare the rRNAs in this respect with tRNA, whose higher-order structure is known in detail from its crystal structure (36) (Table 2). It can be seen that rRNAs have as great a fraction of their sequence in established secondary-structure elements as does tRNA. However, the fact that the former show a much lower fraction of identified tertiary interactions and a greater fraction of unpaired nucleotides than the latter implies that many of the rRNA tertiary interactions remain to be located. (Alternatively, the ribosome might involve protein-rRNA rather than intramolecular rRNA interactions to stabilize three-dimensional structure.) Experimental studies on rRNA are consistent to a first approximation with the structures proposed here, confirming the basic assumption of comparative analysis, i.e., that bases whose compositions strictly covary are physically interacting. In the exhaustive study of Moazed et al. (45) on protection of the bases in the small-subunit rRNA against chemical modification, the vast majority of bases inferred to pair by covariation are found to be protected from chemical modification, both in isolated small-subunit rRNA and in the 30S subunit. The majority of the tertiary interactions are reflected in the chemical protection data as well (45). On the other hand, many of the bases not shown as paired in Fig. 1 are accessible to chemical attack (45). However, in this case a sizeable fraction of them are also protected against chemical modification (in the isolated rRNA), which suggests that considerable higher-order structure remains to be found (although all of it may not involve base-base interactions and so may not be detectable by comparative analysis). The agreement between the higher-order structure of the small-subunit rRNA and protection against chemical modification is not perfect, however; some bases shown to covary canonically are accessible to chemical modification (45).(ABSTRACT TRUNCATED AT 400 WORDS)Keywords
This publication has 62 references indexed in Scilit:
- Gene organization and primary structure of a ribosomal RNA operon from Escherichia coliPublished by Elsevier ,2004
- Functional effects of base changes which further define the decoding center of Escherichia coli 16S ribosomal RNA: Mutation of C1404, G1405, C1496, G1497, and U1498Biochemistry, 1993
- Interaction between the two conserved single-stranded regions at the decoding site of small subunit ribosomal RNA is essential for ribosome functionBiochemistry, 1992
- Stabilities of consecutive A.cntdot.C, C.cntdot.C, G.cntdot.G, U.cntdot.C, and U.cntdot.U mismatches in RNA internal loops: evidence for stable hydrogen-bonded U.cntdot.U and C.cntdot.C+ pairsBiochemistry, 1991
- Conformation of an RNA pseudoknotJournal of Molecular Biology, 1990
- Characterization of the binding sites of protein L11 and the L10.(L12)4 pentameric complex in the GTPase domain of 23 S ribosomal RNA from Escherichia coliJournal of Molecular Biology, 1990
- Structure detection through automated covariance searchBioinformatics, 1989
- Model for the three-dimensional folding of 16 S ribosomal RNAJournal of Molecular Biology, 1988
- Evolutionary relationships amongst archaebacteriaJournal of Molecular Biology, 1987
- Rapid chemical probing of conformation in 16 S ribosomal RNA and 30 S ribosomal subunits using primer extensionJournal of Molecular Biology, 1986